backlight: split AVR PWM and timer drivers (#21540)
parent
b090354143
commit
4137685f8e
@ -0,0 +1,267 @@ |
||||
#include "backlight.h" |
||||
#include "backlight_driver_common.h" |
||||
#include "progmem.h" |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
|
||||
// Maximum duty cycle limit
|
||||
#ifndef BACKLIGHT_LIMIT_VAL |
||||
# define BACKLIGHT_LIMIT_VAL 255 |
||||
#endif |
||||
|
||||
#ifndef BACKLIGHT_PWM_TIMER |
||||
# define BACKLIGHT_PWM_TIMER 1 |
||||
#endif |
||||
|
||||
#if BACKLIGHT_PWM_TIMER == 1 |
||||
# define ICRx ICR1 |
||||
# define TCCRxA TCCR1A |
||||
# define TCCRxB TCCR1B |
||||
# define TIMERx_COMPA_vect TIMER1_COMPA_vect |
||||
# define TIMERx_OVF_vect TIMER1_OVF_vect |
||||
# if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register
|
||||
# define TIMSKx TIMSK |
||||
# else |
||||
# define TIMSKx TIMSK1 |
||||
# endif |
||||
# define TOIEx TOIE1 |
||||
|
||||
# define OCIExA OCIE1A |
||||
# define OCRxx OCR1A |
||||
#elif BACKLIGHT_PWM_TIMER == 3 |
||||
# define ICRx ICR1 |
||||
# define TCCRxA TCCR3A |
||||
# define TCCRxB TCCR3B |
||||
# define TIMERx_COMPA_vect TIMER3_COMPA_vect |
||||
# define TIMERx_OVF_vect TIMER3_OVF_vect |
||||
# define TIMSKx TIMSK3 |
||||
# define TOIEx TOIE3 |
||||
|
||||
# define OCIExA OCIE3A |
||||
# define OCRxx OCR3A |
||||
#else |
||||
# error Invalid backlight PWM timer! |
||||
#endif |
||||
|
||||
#ifndef BACKLIGHT_RESOLUTION |
||||
# define BACKLIGHT_RESOLUTION 0xFFFFU |
||||
#endif |
||||
|
||||
#if (BACKLIGHT_RESOLUTION > 0xFFFF || BACKLIGHT_RESOLUTION < 0x00FF) |
||||
# error "Backlight resolution must be between 0x00FF and 0xFFFF" |
||||
#endif |
||||
|
||||
#define BREATHING_SCALE_FACTOR F_CPU / BACKLIGHT_RESOLUTION / 120 |
||||
|
||||
// The idea of software PWM assisted by hardware timers is the following
|
||||
// we use the hardware timer in fast PWM mode like for hardware PWM, but
|
||||
// instead of letting the Output Match Comparator control the led pin
|
||||
// (which is not possible since the backlight is not wired to PWM pins on the
|
||||
// CPU), we do the LED on/off by oursleves.
|
||||
// The timer is setup to count up to 0xFFFF, and we set the Output Compare
|
||||
// register to the current 16bits backlight level (after CIE correction).
|
||||
// This means the CPU will trigger a compare match interrupt when the counter
|
||||
// reaches the backlight level, where we turn off the LEDs,
|
||||
// but also an overflow interrupt when the counter rolls back to 0,
|
||||
// in which we're going to turn on the LEDs.
|
||||
// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz,
|
||||
// or F_CPU/BACKLIGHT_RESOLUTION if used.
|
||||
|
||||
// Triggered when the counter reaches the OCRx value
|
||||
ISR(TIMERx_COMPA_vect) { |
||||
backlight_pins_off(); |
||||
} |
||||
|
||||
// Triggered when the counter reaches the TOP value
|
||||
// this one triggers at F_CPU/ICRx = 16MHz/65536 =~ 244 Hz
|
||||
ISR(TIMERx_OVF_vect) { |
||||
#ifdef BACKLIGHT_BREATHING |
||||
if (is_breathing()) { |
||||
breathing_task(); |
||||
} |
||||
#endif |
||||
// for very small values of OCRxx (or backlight level)
|
||||
// we can't guarantee this whole code won't execute
|
||||
// at the same time as the compare match interrupt
|
||||
// which means that we might turn on the leds while
|
||||
// trying to turn them off, leading to flickering
|
||||
// artifacts (especially while breathing, because breathing_task
|
||||
// takes many computation cycles).
|
||||
// so better not turn them on while the counter TOP is very low.
|
||||
if (OCRxx > ICRx / 250 + 5) { |
||||
backlight_pins_on(); |
||||
} |
||||
} |
||||
|
||||
// See http://jared.geek.nz/2013/feb/linear-led-pwm
|
||||
static uint16_t cie_lightness(uint16_t v) { |
||||
if (v <= (uint32_t)ICRx / 12) // If the value is less than or equal to ~8% of max
|
||||
{ |
||||
return v / 9; // Same as dividing by 900%
|
||||
} else { |
||||
// In the next two lines values are bit-shifted. This is to avoid loosing decimals in integer math.
|
||||
uint32_t y = (((uint32_t)v + (uint32_t)ICRx / 6) << 5) / ((uint32_t)ICRx / 6 + ICRx); // If above 8%, add ~16% of max, and normalize with (max + ~16% max)
|
||||
uint32_t out = (y * y * y * ICRx) >> 15; // Cube it and undo the bit-shifting. (which is now three times as much due to the cubing)
|
||||
|
||||
if (out > ICRx) // Avoid overflows
|
||||
{ |
||||
out = ICRx; |
||||
} |
||||
return (uint16_t)out; |
||||
} |
||||
} |
||||
|
||||
// rescale the supplied backlight value to be in terms of the value limit // range for val is [0..ICRx]. PWM pin is high while the timer count is below val.
|
||||
static uint32_t rescale_limit_val(uint32_t val) { |
||||
return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256; |
||||
} |
||||
|
||||
// range for val is [0..ICRx]. PWM pin is high while the timer count is below val.
|
||||
static inline void set_pwm(uint16_t val) { |
||||
OCRxx = val; |
||||
} |
||||
|
||||
void backlight_set(uint8_t level) { |
||||
if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS; |
||||
|
||||
if (level == 0) { |
||||
if (OCRxx) { |
||||
TIMSKx &= ~(_BV(OCIExA)); |
||||
TIMSKx &= ~(_BV(TOIEx)); |
||||
} |
||||
backlight_pins_off(); |
||||
} else { |
||||
if (!OCRxx) { |
||||
TIMSKx |= _BV(OCIExA); |
||||
TIMSKx |= _BV(TOIEx); |
||||
} |
||||
} |
||||
// Set the brightness
|
||||
set_pwm(cie_lightness(rescale_limit_val(ICRx * (uint32_t)level / BACKLIGHT_LEVELS))); |
||||
} |
||||
|
||||
void backlight_task(void) {} |
||||
|
||||
#ifdef BACKLIGHT_BREATHING |
||||
# define BREATHING_NO_HALT 0 |
||||
# define BREATHING_HALT_OFF 1 |
||||
# define BREATHING_HALT_ON 2 |
||||
# define BREATHING_STEPS 128 |
||||
|
||||
static uint8_t breathing_halt = BREATHING_NO_HALT; |
||||
static uint16_t breathing_counter = 0; |
||||
|
||||
static uint8_t breath_scale_counter = 1; |
||||
/* Run the breathing loop at ~120Hz*/ |
||||
const uint8_t breathing_ISR_frequency = 120; |
||||
|
||||
static bool breathing = false; |
||||
|
||||
bool is_breathing(void) { |
||||
return breathing; |
||||
} |
||||
|
||||
# define breathing_interrupt_enable() \ |
||||
do { \
|
||||
breathing = true; \
|
||||
} while (0) |
||||
# define breathing_interrupt_disable() \ |
||||
do { \
|
||||
breathing = false; \
|
||||
} while (0) |
||||
|
||||
# define breathing_min() \ |
||||
do { \
|
||||
breathing_counter = 0; \
|
||||
} while (0) |
||||
# define breathing_max() \ |
||||
do { \
|
||||
breathing_counter = get_breathing_period() * breathing_ISR_frequency / 2; \
|
||||
} while (0) |
||||
|
||||
void breathing_enable(void) { |
||||
breathing_counter = 0; |
||||
breathing_halt = BREATHING_NO_HALT; |
||||
breathing_interrupt_enable(); |
||||
} |
||||
|
||||
void breathing_pulse(void) { |
||||
if (get_backlight_level() == 0) |
||||
breathing_min(); |
||||
else |
||||
breathing_max(); |
||||
breathing_halt = BREATHING_HALT_ON; |
||||
breathing_interrupt_enable(); |
||||
} |
||||
|
||||
void breathing_disable(void) { |
||||
breathing_interrupt_disable(); |
||||
// Restore backlight level
|
||||
backlight_set(get_backlight_level()); |
||||
} |
||||
|
||||
void breathing_self_disable(void) { |
||||
if (get_backlight_level() == 0) |
||||
breathing_halt = BREATHING_HALT_OFF; |
||||
else |
||||
breathing_halt = BREATHING_HALT_ON; |
||||
} |
||||
|
||||
/* To generate breathing curve in python:
|
||||
* from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)] |
||||
*/ |
||||
static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
||||
|
||||
// Use this before the cie_lightness function.
|
||||
static inline uint16_t scale_backlight(uint16_t v) { |
||||
return v / BACKLIGHT_LEVELS * get_backlight_level(); |
||||
} |
||||
|
||||
void breathing_task(void) { |
||||
// Only run this ISR at ~120 Hz
|
||||
if (breath_scale_counter++ == BREATHING_SCALE_FACTOR) { |
||||
breath_scale_counter = 1; |
||||
} else { |
||||
return; |
||||
} |
||||
uint16_t interval = (uint16_t)get_breathing_period() * breathing_ISR_frequency / BREATHING_STEPS; |
||||
// resetting after one period to prevent ugly reset at overflow.
|
||||
breathing_counter = (breathing_counter + 1) % (get_breathing_period() * breathing_ISR_frequency); |
||||
uint8_t index = breathing_counter / interval; |
||||
// limit index to max step value
|
||||
if (index >= BREATHING_STEPS) { |
||||
index = BREATHING_STEPS - 1; |
||||
} |
||||
|
||||
if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) { |
||||
breathing_interrupt_disable(); |
||||
} |
||||
|
||||
// Set PWM to a brightnessvalue scaled to the configured resolution
|
||||
set_pwm(cie_lightness(rescale_limit_val(scale_backlight((uint32_t)pgm_read_byte(&breathing_table[index]) * ICRx / 255)))); |
||||
} |
||||
|
||||
#endif // BACKLIGHT_BREATHING
|
||||
|
||||
void backlight_init_ports(void) { |
||||
// Setup backlight pin as output and output to on state.
|
||||
backlight_pins_init(); |
||||
|
||||
// I could write a wall of text here to explain... but TL;DW
|
||||
// Go read the ATmega32u4 datasheet.
|
||||
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
|
||||
|
||||
// TimerX setup, Fast PWM mode count to TOP set in ICRx
|
||||
TCCRxA = _BV(WGM11); // = 0b00000010;
|
||||
// clock select clk/1
|
||||
TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
|
||||
ICRx = BACKLIGHT_RESOLUTION; |
||||
|
||||
backlight_init(); |
||||
|
||||
#ifdef BACKLIGHT_BREATHING |
||||
if (is_backlight_breathing()) { |
||||
breathing_enable(); |
||||
} |
||||
#endif |
||||
} |
Loading…
Reference in new issue