parent
db35065e14
commit
9712501bf3
@ -0,0 +1,21 @@ |
||||
/*
|
||||
Copyright 2012 Jun Wako <wakojun@gmail.com> |
||||
Copyright 2015 Jack Humbert |
||||
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 2 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#pragma once |
||||
|
||||
#include "serial_config.h" |
@ -0,0 +1,162 @@ |
||||
#include <util/twi.h> |
||||
#include <avr/io.h> |
||||
#include <stdlib.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/twi.h> |
||||
#include <stdbool.h> |
||||
#include "i2c.h" |
||||
|
||||
#ifdef USE_I2C |
||||
|
||||
// Limits the amount of we wait for any one i2c transaction.
|
||||
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
|
||||
// 9 bits, a single transaction will take around 90μs to complete.
|
||||
//
|
||||
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
|
||||
// poll loop takes at least 8 clock cycles to execute
|
||||
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8 |
||||
|
||||
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE) |
||||
|
||||
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE]; |
||||
|
||||
static volatile uint8_t slave_buffer_pos; |
||||
static volatile bool slave_has_register_set = false; |
||||
|
||||
// Wait for an i2c operation to finish
|
||||
inline static |
||||
void i2c_delay(void) { |
||||
uint16_t lim = 0; |
||||
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT) |
||||
lim++; |
||||
|
||||
// easier way, but will wait slightly longer
|
||||
// _delay_us(100);
|
||||
} |
||||
|
||||
// Setup twi to run at 100kHz
|
||||
void i2c_master_init(void) { |
||||
// no prescaler
|
||||
TWSR = 0; |
||||
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
|
||||
// Check datasheets for more info.
|
||||
TWBR = ((F_CPU/SCL_CLOCK)-16)/2; |
||||
} |
||||
|
||||
// Start a transaction with the given i2c slave address. The direction of the
|
||||
// transfer is set with I2C_READ and I2C_WRITE.
|
||||
// returns: 0 => success
|
||||
// 1 => error
|
||||
uint8_t i2c_master_start(uint8_t address) { |
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA); |
||||
|
||||
i2c_delay(); |
||||
|
||||
// check that we started successfully
|
||||
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START)) |
||||
return 1; |
||||
|
||||
TWDR = address; |
||||
TWCR = (1<<TWINT) | (1<<TWEN); |
||||
|
||||
i2c_delay(); |
||||
|
||||
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) ) |
||||
return 1; // slave did not acknowledge
|
||||
else |
||||
return 0; // success
|
||||
} |
||||
|
||||
|
||||
// Finish the i2c transaction.
|
||||
void i2c_master_stop(void) { |
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO); |
||||
|
||||
uint16_t lim = 0; |
||||
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT) |
||||
lim++; |
||||
} |
||||
|
||||
// Write one byte to the i2c slave.
|
||||
// returns 0 => slave ACK
|
||||
// 1 => slave NACK
|
||||
uint8_t i2c_master_write(uint8_t data) { |
||||
TWDR = data; |
||||
TWCR = (1<<TWINT) | (1<<TWEN); |
||||
|
||||
i2c_delay(); |
||||
|
||||
// check if the slave acknowledged us
|
||||
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1; |
||||
} |
||||
|
||||
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
|
||||
// if ack=0 the acknowledge bit is not set.
|
||||
// returns: byte read from i2c device
|
||||
uint8_t i2c_master_read(int ack) { |
||||
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA); |
||||
|
||||
i2c_delay(); |
||||
return TWDR; |
||||
} |
||||
|
||||
void i2c_reset_state(void) { |
||||
TWCR = 0; |
||||
} |
||||
|
||||
void i2c_slave_init(uint8_t address) { |
||||
TWAR = address << 0; // slave i2c address
|
||||
// TWEN - twi enable
|
||||
// TWEA - enable address acknowledgement
|
||||
// TWINT - twi interrupt flag
|
||||
// TWIE - enable the twi interrupt
|
||||
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN); |
||||
} |
||||
|
||||
ISR(TWI_vect); |
||||
|
||||
ISR(TWI_vect) { |
||||
uint8_t ack = 1; |
||||
switch(TW_STATUS) { |
||||
case TW_SR_SLA_ACK: |
||||
// this device has been addressed as a slave receiver
|
||||
slave_has_register_set = false; |
||||
break; |
||||
|
||||
case TW_SR_DATA_ACK: |
||||
// this device has received data as a slave receiver
|
||||
// The first byte that we receive in this transaction sets the location
|
||||
// of the read/write location of the slaves memory that it exposes over
|
||||
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
|
||||
// slave_buffer_pos after each write.
|
||||
if(!slave_has_register_set) { |
||||
slave_buffer_pos = TWDR; |
||||
// don't acknowledge the master if this memory loctaion is out of bounds
|
||||
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) { |
||||
ack = 0; |
||||
slave_buffer_pos = 0; |
||||
} |
||||
slave_has_register_set = true; |
||||
} else { |
||||
i2c_slave_buffer[slave_buffer_pos] = TWDR; |
||||
BUFFER_POS_INC(); |
||||
} |
||||
break; |
||||
|
||||
case TW_ST_SLA_ACK: |
||||
case TW_ST_DATA_ACK: |
||||
// master has addressed this device as a slave transmitter and is
|
||||
// requesting data.
|
||||
TWDR = i2c_slave_buffer[slave_buffer_pos]; |
||||
BUFFER_POS_INC(); |
||||
break; |
||||
|
||||
case TW_BUS_ERROR: // something went wrong, reset twi state
|
||||
TWCR = 0; |
||||
default: |
||||
break; |
||||
} |
||||
// Reset everything, so we are ready for the next TWI interrupt
|
||||
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN); |
||||
} |
||||
#endif |
@ -0,0 +1,49 @@ |
||||
#ifndef I2C_H |
||||
#define I2C_H |
||||
|
||||
#include <stdint.h> |
||||
|
||||
#ifndef F_CPU |
||||
#define F_CPU 16000000UL |
||||
#endif |
||||
|
||||
#define I2C_READ 1 |
||||
#define I2C_WRITE 0 |
||||
|
||||
#define I2C_ACK 1 |
||||
#define I2C_NACK 0 |
||||
|
||||
#define SLAVE_BUFFER_SIZE 0x10 |
||||
|
||||
// i2c SCL clock frequency
|
||||
#define SCL_CLOCK 400000L |
||||
|
||||
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE]; |
||||
|
||||
void i2c_master_init(void); |
||||
uint8_t i2c_master_start(uint8_t address); |
||||
void i2c_master_stop(void); |
||||
uint8_t i2c_master_write(uint8_t data); |
||||
uint8_t i2c_master_read(int); |
||||
void i2c_reset_state(void); |
||||
void i2c_slave_init(uint8_t address); |
||||
|
||||
|
||||
static inline unsigned char i2c_start_read(unsigned char addr) { |
||||
return i2c_master_start((addr << 1) | I2C_READ); |
||||
} |
||||
|
||||
static inline unsigned char i2c_start_write(unsigned char addr) { |
||||
return i2c_master_start((addr << 1) | I2C_WRITE); |
||||
} |
||||
|
||||
// from SSD1306 scrips
|
||||
extern unsigned char i2c_rep_start(unsigned char addr); |
||||
extern void i2c_start_wait(unsigned char addr); |
||||
extern unsigned char i2c_readAck(void); |
||||
extern unsigned char i2c_readNak(void); |
||||
extern unsigned char i2c_read(unsigned char ack); |
||||
|
||||
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak(); |
||||
|
||||
#endif |
@ -0,0 +1,41 @@ |
||||
/*
|
||||
This is the c configuration file for the keymap |
||||
|
||||
Copyright 2012 Jun Wako <wakojun@gmail.com> |
||||
Copyright 2015 Jack Humbert |
||||
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 2 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
#pragma once |
||||
|
||||
#include "config.h" |
||||
|
||||
/* Use I2C or Serial, not both */ |
||||
|
||||
#define USE_SERIAL |
||||
// #define USE_I2C
|
||||
|
||||
/* Select hand configuration */ |
||||
|
||||
#define MASTER_LEFT |
||||
// #define MASTER_RIGHT
|
||||
// #define EE_HANDS
|
||||
|
||||
// Underglow
|
||||
/*
|
||||
#undef RGBLED_NUM |
||||
#define RGBLED_NUM 14 // Number of LEDs
|
||||
#define RGBLIGHT_ANIMATIONS |
||||
#define RGBLIGHT_SLEEP |
||||
*/ |
@ -0,0 +1,22 @@ |
||||
|
||||
# Build Options
|
||||
# change to "no" to disable the options, or define them in the Makefile in
|
||||
# the appropriate keymap folder that will get included automatically
|
||||
#
|
||||
|
||||
OLED_ENABLE = no
|
||||
RGBLIGHT_ENABLE = no
|
||||
|
||||
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
|
||||
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
|
||||
EXTRAKEY_ENABLE = no # Audio control and System control(+450)
|
||||
CONSOLE_ENABLE = no # Console for debug(+400)
|
||||
COMMAND_ENABLE = no # Commands for debug and configuration
|
||||
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
|
||||
MIDI_ENABLE = no # MIDI controls
|
||||
AUDIO_ENABLE = no # Audio output on port C6
|
||||
UNICODE_ENABLE = no # Unicode
|
||||
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
|
||||
ONEHAND_ENABLE = no # Enable one-hand typing
|
||||
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
|
||||
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
|
@ -0,0 +1 @@ |
||||
#include "lily58.h" |
@ -0,0 +1,28 @@ |
||||
#ifndef LILY58_H |
||||
#define LILY58_H |
||||
|
||||
#include "quantum.h" |
||||
|
||||
#ifdef KEYBOARD_lily58_rev1 |
||||
#include "rev1.h" |
||||
#endif |
||||
|
||||
|
||||
|
||||
// Used to create a keymap using only KC_ prefixed keys
|
||||
#define LAYOUT_kc( \ |
||||
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
|
||||
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
|
||||
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
|
||||
L30, L31, L32, L33, L34, L35, L45, R40, R30, R31, R32, R33, R34, R35, \
|
||||
L41, L42, L43, L44, R41, R42, R43, R44 \
|
||||
) \
|
||||
LAYOUT( \
|
||||
KC_##L00, KC_##L01, KC_##L02, KC_##L03, KC_##L04, KC_##L05, KC_##R00, KC_##R01, KC_##R02, KC_##R03, KC_##R04, KC_##R05, \
|
||||
KC_##L10, KC_##L11, KC_##L12, KC_##L13, KC_##L14, KC_##L15, KC_##R10, KC_##R11, KC_##R12, KC_##R13, KC_##R14, KC_##R15, \
|
||||
KC_##L20, KC_##L21, KC_##L22, KC_##L23, KC_##L24, KC_##L25, KC_##R20, KC_##R21, KC_##R22, KC_##R23, KC_##R24, KC_##R25, \
|
||||
KC_##L30, KC_##L31, KC_##L32, KC_##L33, KC_##L34, KC_##L35, KC_##L45, KC_##R40, KC_##R30, KC_##R31, KC_##R32, KC_##R33, KC_##R34, KC_##R35, \
|
||||
KC_##L41, KC_##L42, KC_##L43, KC_##L44, KC_##R41, KC_##R42, KC_##R43, KC_##R44 \
|
||||
) |
||||
|
||||
#endif |
@ -0,0 +1,459 @@ |
||||
/*
|
||||
Copyright 2012 Jun Wako <wakojun@gmail.com> |
||||
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 2 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
/*
|
||||
* scan matrix |
||||
*/ |
||||
#include <stdint.h> |
||||
#include <stdbool.h> |
||||
#include <avr/io.h> |
||||
#include "wait.h" |
||||
#include "print.h" |
||||
#include "debug.h" |
||||
#include "util.h" |
||||
#include "matrix.h" |
||||
#include "split_util.h" |
||||
#include "pro_micro.h" |
||||
#include "config.h" |
||||
#include "timer.h" |
||||
|
||||
#ifdef USE_I2C |
||||
# include "i2c.h" |
||||
#else // USE_SERIAL
|
||||
# include "serial.h" |
||||
#endif |
||||
|
||||
#ifndef DEBOUNCING_DELAY |
||||
# define DEBOUNCING_DELAY 5 |
||||
#endif |
||||
|
||||
#if (DEBOUNCING_DELAY > 0) |
||||
static uint16_t debouncing_time; |
||||
static bool debouncing = false; |
||||
#endif |
||||
|
||||
#if (MATRIX_COLS <= 8) |
||||
# define print_matrix_header() print("\nr/c 01234567\n") |
||||
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) |
||||
# define matrix_bitpop(i) bitpop(matrix[i]) |
||||
# define ROW_SHIFTER ((uint8_t)1) |
||||
#else |
||||
# error "Currently only supports 8 COLS" |
||||
#endif |
||||
static matrix_row_t matrix_debouncing[MATRIX_ROWS]; |
||||
|
||||
#define ERROR_DISCONNECT_COUNT 5 |
||||
|
||||
#define ROWS_PER_HAND (MATRIX_ROWS/2) |
||||
|
||||
static uint8_t error_count = 0; |
||||
|
||||
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; |
||||
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; |
||||
|
||||
/* matrix state(1:on, 0:off) */ |
||||
static matrix_row_t matrix[MATRIX_ROWS]; |
||||
static matrix_row_t matrix_debouncing[MATRIX_ROWS]; |
||||
|
||||
#if (DIODE_DIRECTION == COL2ROW) |
||||
static void init_cols(void); |
||||
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row); |
||||
static void unselect_rows(void); |
||||
static void select_row(uint8_t row); |
||||
static void unselect_row(uint8_t row); |
||||
#elif (DIODE_DIRECTION == ROW2COL) |
||||
static void init_rows(void); |
||||
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col); |
||||
static void unselect_cols(void); |
||||
static void unselect_col(uint8_t col); |
||||
static void select_col(uint8_t col); |
||||
#endif |
||||
|
||||
__attribute__ ((weak)) |
||||
void matrix_init_kb(void) { |
||||
matrix_init_user(); |
||||
} |
||||
|
||||
__attribute__ ((weak)) |
||||
void matrix_scan_kb(void) { |
||||
matrix_scan_user(); |
||||
} |
||||
|
||||
__attribute__ ((weak)) |
||||
void matrix_init_user(void) { |
||||
} |
||||
|
||||
__attribute__ ((weak)) |
||||
void matrix_scan_user(void) { |
||||
} |
||||
|
||||
inline |
||||
uint8_t matrix_rows(void) |
||||
{ |
||||
return MATRIX_ROWS; |
||||
} |
||||
|
||||
inline |
||||
uint8_t matrix_cols(void) |
||||
{ |
||||
return MATRIX_COLS; |
||||
} |
||||
|
||||
void matrix_init(void) |
||||
{ |
||||
debug_enable = true; |
||||
debug_matrix = true; |
||||
debug_mouse = true; |
||||
// initialize row and col
|
||||
#if (DIODE_DIRECTION == COL2ROW) |
||||
unselect_rows(); |
||||
init_cols(); |
||||
#elif (DIODE_DIRECTION == ROW2COL) |
||||
unselect_cols(); |
||||
init_rows(); |
||||
#endif |
||||
|
||||
TX_RX_LED_INIT; |
||||
|
||||
// initialize matrix state: all keys off
|
||||
for (uint8_t i=0; i < MATRIX_ROWS; i++) { |
||||
matrix[i] = 0; |
||||
matrix_debouncing[i] = 0; |
||||
} |
||||
|
||||
matrix_init_quantum(); |
||||
|
||||
} |
||||
|
||||
uint8_t _matrix_scan(void) |
||||
{ |
||||
int offset = isLeftHand ? 0 : (ROWS_PER_HAND); |
||||
#if (DIODE_DIRECTION == COL2ROW) |
||||
// Set row, read cols
|
||||
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { |
||||
# if (DEBOUNCING_DELAY > 0) |
||||
bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row); |
||||
|
||||
if (matrix_changed) { |
||||
debouncing = true; |
||||
debouncing_time = timer_read(); |
||||
} |
||||
|
||||
# else |
||||
read_cols_on_row(matrix+offset, current_row); |
||||
# endif |
||||
|
||||
} |
||||
|
||||
#elif (DIODE_DIRECTION == ROW2COL) |
||||
// Set col, read rows
|
||||
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { |
||||
# if (DEBOUNCING_DELAY > 0) |
||||
bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col); |
||||
if (matrix_changed) { |
||||
debouncing = true; |
||||
debouncing_time = timer_read(); |
||||
} |
||||
# else |
||||
read_rows_on_col(matrix+offset, current_col); |
||||
# endif |
||||
|
||||
} |
||||
#endif |
||||
|
||||
# if (DEBOUNCING_DELAY > 0) |
||||
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) { |
||||
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { |
||||
matrix[i+offset] = matrix_debouncing[i+offset]; |
||||
} |
||||
debouncing = false; |
||||
} |
||||
# endif |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
#ifdef USE_I2C |
||||
|
||||
// Get rows from other half over i2c
|
||||
int i2c_transaction(void) { |
||||
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; |
||||
|
||||
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); |
||||
if (err) goto i2c_error; |
||||
|
||||
// start of matrix stored at 0x00
|
||||
err = i2c_master_write(0x00); |
||||
if (err) goto i2c_error; |
||||
|
||||
// Start read
|
||||
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ); |
||||
if (err) goto i2c_error; |
||||
|
||||
if (!err) { |
||||
int i; |
||||
for (i = 0; i < ROWS_PER_HAND-1; ++i) { |
||||
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK); |
||||
} |
||||
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK); |
||||
i2c_master_stop(); |
||||
} else { |
||||
i2c_error: // the cable is disconnceted, or something else went wrong
|
||||
i2c_reset_state(); |
||||
return err; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
#else // USE_SERIAL
|
||||
|
||||
int serial_transaction(void) { |
||||
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; |
||||
|
||||
if (serial_update_buffers()) { |
||||
return 1; |
||||
} |
||||
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) { |
||||
matrix[slaveOffset+i] = serial_slave_buffer[i]; |
||||
} |
||||
return 0; |
||||
} |
||||
#endif |
||||
|
||||
uint8_t matrix_scan(void) |
||||
{ |
||||
uint8_t ret = _matrix_scan(); |
||||
|
||||
#ifdef USE_I2C |
||||
if( i2c_transaction() ) { |
||||
#else // USE_SERIAL
|
||||
if( serial_transaction() ) { |
||||
#endif |
||||
// turn on the indicator led when halves are disconnected
|
||||
TXLED1; |
||||
|
||||
error_count++; |
||||
|
||||
if (error_count > ERROR_DISCONNECT_COUNT) { |
||||
// reset other half if disconnected
|
||||
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; |
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) { |
||||
matrix[slaveOffset+i] = 0; |
||||
} |
||||
} |
||||
} else { |
||||
// turn off the indicator led on no error
|
||||
TXLED0; |
||||
error_count = 0; |
||||
} |
||||
matrix_scan_quantum(); |
||||
return ret; |
||||
} |
||||
|
||||
void matrix_slave_scan(void) { |
||||
_matrix_scan(); |
||||
|
||||
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; |
||||
|
||||
#ifdef USE_I2C |
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) { |
||||
i2c_slave_buffer[i] = matrix[offset+i]; |
||||
} |
||||
#else // USE_SERIAL
|
||||
for (int i = 0; i < ROWS_PER_HAND; ++i) { |
||||
serial_slave_buffer[i] = matrix[offset+i]; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
bool matrix_is_modified(void) |
||||
{ |
||||
if (debouncing) return false; |
||||
return true; |
||||
} |
||||
|
||||
inline |
||||
bool matrix_is_on(uint8_t row, uint8_t col) |
||||
{ |
||||
return (matrix[row] & ((matrix_row_t)1<<col)); |
||||
} |
||||
|
||||
inline |
||||
matrix_row_t matrix_get_row(uint8_t row) |
||||
{ |
||||
return matrix[row]; |
||||
} |
||||
|
||||
void matrix_print(void) |
||||
{ |
||||
print("\nr/c 0123456789ABCDEF\n"); |
||||
for (uint8_t row = 0; row < MATRIX_ROWS; row++) { |
||||
phex(row); print(": "); |
||||
pbin_reverse16(matrix_get_row(row)); |
||||
print("\n"); |
||||
} |
||||
} |
||||
|
||||
uint8_t matrix_key_count(void) |
||||
{ |
||||
uint8_t count = 0; |
||||
for (uint8_t i = 0; i < MATRIX_ROWS; i++) { |
||||
count += bitpop16(matrix[i]); |
||||
} |
||||
return count; |
||||
} |
||||
|
||||
#if (DIODE_DIRECTION == COL2ROW) |
||||
|
||||
static void init_cols(void) |
||||
{ |
||||
for(uint8_t x = 0; x < MATRIX_COLS; x++) { |
||||
uint8_t pin = col_pins[x]; |
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
} |
||||
} |
||||
|
||||
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) |
||||
{ |
||||
// Store last value of row prior to reading
|
||||
matrix_row_t last_row_value = current_matrix[current_row]; |
||||
|
||||
// Clear data in matrix row
|
||||
current_matrix[current_row] = 0; |
||||
|
||||
// Select row and wait for row selecton to stabilize
|
||||
select_row(current_row); |
||||
wait_us(30); |
||||
|
||||
// For each col...
|
||||
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { |
||||
|
||||
// Select the col pin to read (active low)
|
||||
uint8_t pin = col_pins[col_index]; |
||||
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)); |
||||
|
||||
// Populate the matrix row with the state of the col pin
|
||||
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index); |
||||
} |
||||
|
||||
// Unselect row
|
||||
unselect_row(current_row); |
||||
|
||||
return (last_row_value != current_matrix[current_row]); |
||||
} |
||||
|
||||
static void select_row(uint8_t row) |
||||
{ |
||||
uint8_t pin = row_pins[row]; |
||||
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
|
||||
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
|
||||
} |
||||
|
||||
static void unselect_row(uint8_t row) |
||||
{ |
||||
uint8_t pin = row_pins[row]; |
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
} |
||||
|
||||
static void unselect_rows(void) |
||||
{ |
||||
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { |
||||
uint8_t pin = row_pins[x]; |
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
} |
||||
} |
||||
|
||||
#elif (DIODE_DIRECTION == ROW2COL) |
||||
|
||||
static void init_rows(void) |
||||
{ |
||||
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { |
||||
uint8_t pin = row_pins[x]; |
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
} |
||||
} |
||||
|
||||
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) |
||||
{ |
||||
bool matrix_changed = false; |
||||
|
||||
// Select col and wait for col selecton to stabilize
|
||||
select_col(current_col); |
||||
wait_us(30); |
||||
|
||||
// For each row...
|
||||
for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) |
||||
{ |
||||
|
||||
// Store last value of row prior to reading
|
||||
matrix_row_t last_row_value = current_matrix[row_index]; |
||||
|
||||
// Check row pin state
|
||||
if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0) |
||||
{ |
||||
// Pin LO, set col bit
|
||||
current_matrix[row_index] |= (ROW_SHIFTER << current_col); |
||||
} |
||||
else |
||||
{ |
||||
// Pin HI, clear col bit
|
||||
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); |
||||
} |
||||
|
||||
// Determine if the matrix changed state
|
||||
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) |
||||
{ |
||||
matrix_changed = true; |
||||
} |
||||
} |
||||
|
||||
// Unselect col
|
||||
unselect_col(current_col); |
||||
|
||||
return matrix_changed; |
||||
} |
||||
|
||||
static void select_col(uint8_t col) |
||||
{ |
||||
uint8_t pin = col_pins[col]; |
||||
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
|
||||
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
|
||||
} |
||||
|
||||
static void unselect_col(uint8_t col) |
||||
{ |
||||
uint8_t pin = col_pins[col]; |
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
} |
||||
|
||||
static void unselect_cols(void) |
||||
{ |
||||
for(uint8_t x = 0; x < MATRIX_COLS; x++) { |
||||
uint8_t pin = col_pins[x]; |
||||
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
||||
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
||||
} |
||||
} |
||||
|
||||
#endif |
@ -0,0 +1,17 @@ |
||||
# Lily58 |
||||
|
||||
Lily58 is 6×4+5keys column-staggered split keyboard. |
||||
|
||||
 |
||||
|
||||
 |
||||
|
||||
Keyboard Maintainer: [Naoki Katahira](https://github.com/kata0510/) [Twitter:@F_YUUCHI](https://twitter.com/F_YUUCHI) |
||||
Hardware Supported: Lily58 PCB, ProMicro |
||||
Hardware Availability: [PCB & Case Data](https://github.com/kata0510/Lily58) |
||||
|
||||
Make example for this keyboard (after setting up your build environment): |
||||
|
||||
make lily58:default |
||||
|
||||
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs). |
@ -0,0 +1,86 @@ |
||||
/*
|
||||
Copyright 2012 Jun Wako <wakojun@gmail.com> |
||||
Copyright 2015 Jack Humbert |
||||
Copyright 2017 F_YUUCHI |
||||
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 2 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#pragma once |
||||
|
||||
//#include QMK_KEYBOARD_CONFIG_H
|
||||
#include "config_common.h" |
||||
|
||||
/* USB Device descriptor parameter */ |
||||
#define VENDOR_ID 0xFC51 |
||||
#define PRODUCT_ID 0x0058 |
||||
#define DEVICE_VER 0x0100 |
||||
#define MANUFACTURER F_YUUCHI |
||||
#define PRODUCT Lily58 |
||||
#define DESCRIPTION Lily58 is 6×4+5keys column-staggered split keyboard. |
||||
|
||||
/* key matrix size */ |
||||
// Rows are doubled-up
|
||||
#define MATRIX_ROWS 10 |
||||
#define MATRIX_COLS 6 |
||||
|
||||
// wiring of each half
|
||||
#define MATRIX_ROW_PINS { C6, D7, E6, B4, B5 } |
||||
#define MATRIX_COL_PINS { F6, F7, B1, B3, B2, B6 } |
||||
|
||||
#define CATERINA_BOOTLOADER |
||||
|
||||
/* define tapping term */ |
||||
#define TAPPING_TERM 100 |
||||
|
||||
/* define if matrix has ghost */ |
||||
//#define MATRIX_HAS_GHOST
|
||||
|
||||
/* Set 0 if debouncing isn't needed */ |
||||
#define DEBOUNCING_DELAY 5 |
||||
|
||||
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */ |
||||
#define LOCKING_SUPPORT_ENABLE |
||||
/* Locking resynchronize hack */ |
||||
#define LOCKING_RESYNC_ENABLE |
||||
|
||||
/* key combination for command */ |
||||
#define IS_COMMAND() ( \ |
||||
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
|
||||
) |
||||
|
||||
/* ws2812 RGB LED */ |
||||
#define RGB_DI_PIN D3 |
||||
#define RGBLIGHT_TIMER |
||||
#define RGBLED_NUM 14 // Number of LEDs
|
||||
#define ws2812_PORTREG PORTD |
||||
#define ws2812_DDRREG DDRD |
||||
|
||||
/*
|
||||
* Feature disable options |
||||
* These options are also useful to firmware size reduction. |
||||
*/ |
||||
|
||||
/* disable debug print */ |
||||
// #define NO_DEBUG
|
||||
|
||||
/* disable print */ |
||||
// #define NO_PRINT
|
||||
|
||||
/* disable action features */ |
||||
//#define NO_ACTION_LAYER
|
||||
//#define NO_ACTION_TAPPING
|
||||
//#define NO_ACTION_ONESHOT
|
||||
//#define NO_ACTION_MACRO
|
||||
//#define NO_ACTION_FUNCTION
|
@ -0,0 +1,24 @@ |
||||
#include "lily58.h" |
||||
|
||||
/*
|
||||
#ifdef SSD1306OLED |
||||
void led_set_kb(uint8_t usb_led) { |
||||
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
|
||||
led_set_user(usb_led); |
||||
} |
||||
#endif |
||||
*/ |
||||
|
||||
void matrix_init_kb(void) { |
||||
|
||||
// // green led on
|
||||
// DDRD |= (1<<5);
|
||||
// PORTD &= ~(1<<5);
|
||||
|
||||
// // orange led on
|
||||
// DDRB |= (1<<0);
|
||||
// PORTB &= ~(1<<0);
|
||||
|
||||
matrix_init_user(); |
||||
}; |
||||
|
@ -0,0 +1,61 @@ |
||||
#pragma once |
||||
|
||||
#include "lily58.h" |
||||
|
||||
//void promicro_bootloader_jmp(bool program);
|
||||
#include "quantum.h" |
||||
|
||||
|
||||
#ifdef USE_I2C |
||||
#include <stddef.h> |
||||
#ifdef __AVR__ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#endif |
||||
#endif |
||||
|
||||
|
||||
//void promicro_bootloader_jmp(bool program);
|
||||
#ifndef FLIP_HALF |
||||
#define LAYOUT( \ |
||||
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
|
||||
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
|
||||
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
|
||||
L30, L31, L32, L33, L34, L35, L45, R40, R30, R31, R32, R33, R34, R35, \
|
||||
L41, L42, L43, L44, R41, R42, R43, R44 \
|
||||
) \
|
||||
{ \
|
||||
{ L00, L01, L02, L03, L04, L05 }, \
|
||||
{ L10, L11, L12, L13, L14, L15 }, \
|
||||
{ L20, L21, L22, L23, L24, L25 }, \
|
||||
{ L30, L31, L32, L33, L34, L35 }, \
|
||||
{ KC_NO, L41, L42, L43, L44, L45 }, \
|
||||
{ R05, R04, R03, R02, R01, R00 }, \
|
||||
{ R15, R14, R13, R12, R11, R10 }, \
|
||||
{ R25, R24, R23, R22, R21, R20 }, \
|
||||
{ R35, R34, R33, R32, R31, R30 }, \
|
||||
{ KC_NO, R44, R43, R42, R41, R40 } \
|
||||
} |
||||
#else |
||||
// Keymap with right side flipped
|
||||
// (TRRS jack on both halves are to the right)
|
||||
#define LAYOUT( \ |
||||
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
|
||||
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
|
||||
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
|
||||
L30, L31, L32, L33, L34, L35, L45, R30, R31, R32, R33, R34, R35, R45, \
|
||||
L41, L42, L43, L44, R41, R42, R43, R44 \
|
||||
) \
|
||||
{ \
|
||||
{ L00, L01, L02, L03, L04, L05 }, \
|
||||
{ L10, L11, L12, L13, L14, L15 }, \
|
||||
{ L20, L21, L22, L23, L24, L25 }, \
|
||||
{ L30, L31, L32, L33, L34, L35 }, \
|
||||
{ KC_NO, L41, L42, L43, L44, L45 }, \
|
||||
{ R00, R01, R02, R03, R04, R05 }, \
|
||||
{ R10, R11, R12, R13, R14, R15 }, \
|
||||
{ R20, R21, R22, R23, R24, R25 }, \
|
||||
{ R30, R31, R32, R33, R34, R35 }, \
|
||||
{ KC_NO, R41, R42, R43, R44, R45 } \
|
||||
} |
||||
#endif |
@ -0,0 +1 @@ |
||||
BACKLIGHT_ENABLE = no
|
@ -0,0 +1,76 @@ |
||||
SRC += matrix.c \
|
||||
i2c.c \
|
||||
split_util.c \
|
||||
serial.c \
|
||||
ssd1306.c
|
||||
|
||||
# MCU name
|
||||
#MCU = at90usb1287
|
||||
MCU = atmega32u4
|
||||
|
||||
# Processor frequency.
|
||||
# This will define a symbol, F_CPU, in all source code files equal to the
|
||||
# processor frequency in Hz. You can then use this symbol in your source code to
|
||||
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
|
||||
# automatically to create a 32-bit value in your source code.
|
||||
#
|
||||
# This will be an integer division of F_USB below, as it is sourced by
|
||||
# F_USB after it has run through any CPU prescalers. Note that this value
|
||||
# does not *change* the processor frequency - it should merely be updated to
|
||||
# reflect the processor speed set externally so that the code can use accurate
|
||||
# software delays.
|
||||
F_CPU = 16000000
|
||||
|
||||
#
|
||||
# LUFA specific
|
||||
#
|
||||
# Target architecture (see library "Board Types" documentation).
|
||||
ARCH = AVR8
|
||||
|
||||
# Input clock frequency.
|
||||
# This will define a symbol, F_USB, in all source code files equal to the
|
||||
# input clock frequency (before any prescaling is performed) in Hz. This value may
|
||||
# differ from F_CPU if prescaling is used on the latter, and is required as the
|
||||
# raw input clock is fed directly to the PLL sections of the AVR for high speed
|
||||
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
|
||||
# at the end, this will be done automatically to create a 32-bit value in your
|
||||
# source code.
|
||||
#
|
||||
# If no clock division is performed on the input clock inside the AVR (via the
|
||||
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
|
||||
F_USB = $(F_CPU)
|
||||
|
||||
# Interrupt driven control endpoint task(+60)
|
||||
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
|
||||
|
||||
|
||||
# Bootloader
|
||||
# This definition is optional, and if your keyboard supports multiple bootloaders of
|
||||
# different sizes, comment this out, and the correct address will be loaded
|
||||
# automatically (+60). See bootloader.mk for all options.
|
||||
BOOTLOADER = caterina
|
||||
|
||||
# Build Options
|
||||
# change to "no" to disable the options, or define them in the Makefile in
|
||||
# the appropriate keymap folder that will get included automatically
|
||||
#
|
||||
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
|
||||
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
|
||||
EXTRAKEY_ENABLE = no # Audio control and System control(+450)
|
||||
CONSOLE_ENABLE = no # Console for debug(+400)
|
||||
COMMAND_ENABLE = no # Commands for debug and configuration
|
||||
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
|
||||
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
|
||||
MIDI_ENABLE = no # MIDI controls
|
||||
AUDIO_ENABLE = no # Audio output on port C6
|
||||
UNICODE_ENABLE = no # Unicode
|
||||
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
|
||||
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
|
||||
SUBPROJECT_rev1 = no
|
||||
USE_I2C = no
|
||||
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
|
||||
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
|
||||
|
||||
CUSTOM_MATRIX = yes
|
||||
|
||||
DEFAULT_FOLDER = lily58/rev1
|
@ -0,0 +1,445 @@ |
||||
/*
|
||||
* WARNING: be careful changing this code, it is very timing dependent |
||||
*/ |
||||
|
||||
#ifndef F_CPU |
||||
#define F_CPU 16000000 |
||||
#endif |
||||
|
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
#include <stddef.h> |
||||
#include <stdbool.h> |
||||
#include "serial.h" |
||||
//#include <pro_micro.h>
|
||||
|
||||
#ifdef USE_SERIAL |
||||
//#ifndef USE_SERIAL_PD2
|
||||
|
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */ |
||||
#if SERIAL_SLAVE_BUFFER_LENGTH > 0 |
||||
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0}; |
||||
#endif |
||||
#if SERIAL_MASTER_BUFFER_LENGTH > 0 |
||||
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0}; |
||||
#endif |
||||
uint8_t volatile status0 = 0; |
||||
|
||||
SSTD_t transactions[] = { |
||||
{ (uint8_t *)&status0, |
||||
#if SERIAL_MASTER_BUFFER_LENGTH > 0 |
||||
sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer, |
||||
#else |
||||
0, (uint8_t *)NULL, |
||||
#endif |
||||
#if SERIAL_SLAVE_BUFFER_LENGTH > 0 |
||||
sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer |
||||
#else |
||||
0, (uint8_t *)NULL, |
||||
#endif |
||||
} |
||||
}; |
||||
|
||||
void serial_master_init(void) |
||||
{ soft_serial_initiator_init(transactions); } |
||||
|
||||
void serial_slave_init(void) |
||||
{ soft_serial_target_init(transactions); } |
||||
|
||||
// 0 => no error
|
||||
// 1 => slave did not respond
|
||||
// 2 => checksum error
|
||||
int serial_update_buffers() |
||||
{ return soft_serial_transaction(); } |
||||
|
||||
#endif // Simple API (OLD API, compatible with let's split serial.c)
|
||||
|
||||
#define ALWAYS_INLINE __attribute__((always_inline)) |
||||
#define NO_INLINE __attribute__((noinline)) |
||||
#define _delay_sub_us(x) __builtin_avr_delay_cycles(x) |
||||
|
||||
// Serial pulse period in microseconds.
|
||||
#define TID_SEND_ADJUST 14 |
||||
|
||||
#define SELECT_SERIAL_SPEED 1 |
||||
#if SELECT_SERIAL_SPEED == 0 |
||||
// Very High speed
|
||||
#define SERIAL_DELAY 4 // micro sec
|
||||
#define READ_WRITE_START_ADJUST 33 // cycles
|
||||
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
|
||||
#elif SELECT_SERIAL_SPEED == 1 |
||||
// High speed
|
||||
#define SERIAL_DELAY 6 // micro sec
|
||||
#define READ_WRITE_START_ADJUST 30 // cycles
|
||||
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
|
||||
#elif SELECT_SERIAL_SPEED == 2 |
||||
// Middle speed
|
||||
#define SERIAL_DELAY 12 // micro sec
|
||||
#define READ_WRITE_START_ADJUST 30 // cycles
|
||||
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
|
||||
#elif SELECT_SERIAL_SPEED == 3 |
||||
// Low speed
|
||||
#define SERIAL_DELAY 24 // micro sec
|
||||
#define READ_WRITE_START_ADJUST 30 // cycles
|
||||
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
|
||||
#elif SELECT_SERIAL_SPEED == 4 |
||||
// Very Low speed
|
||||
#define SERIAL_DELAY 50 // micro sec
|
||||
#define READ_WRITE_START_ADJUST 30 // cycles
|
||||
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
|
||||
#else |
||||
#error Illegal Serial Speed |
||||
#endif |
||||
|
||||
|
||||
#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2) |
||||
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2) |
||||
|
||||
#define SLAVE_INT_WIDTH_US 1 |
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
#define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY |
||||
#else |
||||
#define SLAVE_INT_ACK_WIDTH_UNIT 2 |
||||
#define SLAVE_INT_ACK_WIDTH 4 |
||||
#endif |
||||
|
||||
static SSTD_t *Transaction_table = NULL; |
||||
|
||||
inline static |
||||
void serial_delay(void) { |
||||
_delay_us(SERIAL_DELAY); |
||||
} |
||||
|
||||
inline static |
||||
void serial_delay_half1(void) { |
||||
_delay_us(SERIAL_DELAY_HALF1); |
||||
} |
||||
|
||||
inline static |
||||
void serial_delay_half2(void) { |
||||
_delay_us(SERIAL_DELAY_HALF2); |
||||
} |
||||
|
||||
inline static void serial_output(void) ALWAYS_INLINE; |
||||
inline static |
||||
void serial_output(void) { |
||||
SERIAL_PIN_DDR |= SERIAL_PIN_MASK; |
||||
} |
||||
|
||||
// make the serial pin an input with pull-up resistor
|
||||
inline static void serial_input_with_pullup(void) ALWAYS_INLINE; |
||||
inline static |
||||
void serial_input_with_pullup(void) { |
||||
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK; |
||||
SERIAL_PIN_PORT |= SERIAL_PIN_MASK; |
||||
} |
||||
|
||||
inline static |
||||
uint8_t serial_read_pin(void) { |
||||
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK); |
||||
} |
||||
|
||||
inline static void serial_low(void) ALWAYS_INLINE; |
||||
inline static |
||||
void serial_low(void) { |
||||
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK; |
||||
} |
||||
|
||||
inline static void serial_high(void) ALWAYS_INLINE; |
||||
inline static |
||||
void serial_high(void) { |
||||
SERIAL_PIN_PORT |= SERIAL_PIN_MASK; |
||||
} |
||||
|
||||
void soft_serial_initiator_init(SSTD_t *sstd_table) |
||||
{ |
||||
Transaction_table = sstd_table; |
||||
serial_output(); |
||||
serial_high(); |
||||
} |
||||
|
||||
void soft_serial_target_init(SSTD_t *sstd_table) |
||||
{ |
||||
Transaction_table = sstd_table; |
||||
serial_input_with_pullup(); |
||||
|
||||
#if SERIAL_PIN_MASK == _BV(PD0) |
||||
// Enable INT0
|
||||
EIMSK |= _BV(INT0); |
||||
// Trigger on falling edge of INT0
|
||||
EICRA &= ~(_BV(ISC00) | _BV(ISC01)); |
||||
#elif SERIAL_PIN_MASK == _BV(PD2) |
||||
// Enable INT2
|
||||
EIMSK |= _BV(INT2); |
||||
// Trigger on falling edge of INT2
|
||||
EICRA &= ~(_BV(ISC20) | _BV(ISC21)); |
||||
#else |
||||
#error unknown SERIAL_PIN_MASK value |
||||
#endif |
||||
} |
||||
|
||||
// Used by the sender to synchronize timing with the reciver.
|
||||
static void sync_recv(void) NO_INLINE; |
||||
static |
||||
void sync_recv(void) { |
||||
for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) { |
||||
} |
||||
// This shouldn't hang if the target disconnects because the
|
||||
// serial line will float to high if the target does disconnect.
|
||||
while (!serial_read_pin()); |
||||
} |
||||
|
||||
// Used by the reciver to send a synchronization signal to the sender.
|
||||
static void sync_send(void)NO_INLINE; |
||||
static |
||||
void sync_send(void) { |
||||
serial_low(); |
||||
serial_delay(); |
||||
serial_high(); |
||||
} |
||||
|
||||
// Reads a byte from the serial line
|
||||
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE; |
||||
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) { |
||||
uint8_t byte, i, p, pb; |
||||
|
||||
_delay_sub_us(READ_WRITE_START_ADJUST); |
||||
for( i = 0, byte = 0, p = 0; i < bit; i++ ) { |
||||
serial_delay_half1(); // read the middle of pulses
|
||||
if( serial_read_pin() ) { |
||||
byte = (byte << 1) | 1; p ^= 1; |
||||
} else { |
||||
byte = (byte << 1) | 0; p ^= 0; |
||||
} |
||||
_delay_sub_us(READ_WRITE_WIDTH_ADJUST); |
||||
serial_delay_half2(); |
||||
} |
||||
/* recive parity bit */ |
||||
serial_delay_half1(); // read the middle of pulses
|
||||
pb = serial_read_pin(); |
||||
_delay_sub_us(READ_WRITE_WIDTH_ADJUST); |
||||
serial_delay_half2(); |
||||
|
||||
*pterrcount += (p != pb)? 1 : 0; |
||||
|
||||
return byte; |
||||
} |
||||
|
||||
// Sends a byte with MSB ordering
|
||||
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE; |
||||
void serial_write_chunk(uint8_t data, uint8_t bit) { |
||||
uint8_t b, p; |
||||
for( p = 0, b = 1<<(bit-1); b ; b >>= 1) { |
||||
if(data & b) { |
||||
serial_high(); p ^= 1; |
||||
} else { |
||||
serial_low(); p ^= 0; |
||||
} |
||||
serial_delay(); |
||||
} |
||||
/* send parity bit */ |
||||
if(p & 1) { serial_high(); } |
||||
else { serial_low(); } |
||||
serial_delay(); |
||||
|
||||
serial_low(); // sync_send() / senc_recv() need raise edge
|
||||
} |
||||
|
||||
static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE; |
||||
static |
||||
void serial_send_packet(uint8_t *buffer, uint8_t size) { |
||||
for (uint8_t i = 0; i < size; ++i) { |
||||
uint8_t data; |
||||
data = buffer[i]; |
||||
sync_send(); |
||||
serial_write_chunk(data,8); |
||||
} |
||||
} |
||||
|
||||
static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE; |
||||
static |
||||
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) { |
||||
uint8_t pecount = 0; |
||||
for (uint8_t i = 0; i < size; ++i) { |
||||
uint8_t data; |
||||
sync_recv(); |
||||
data = serial_read_chunk(&pecount, 8); |
||||
buffer[i] = data; |
||||
} |
||||
return pecount == 0; |
||||
} |
||||
|
||||
inline static |
||||
void change_sender2reciver(void) { |
||||
sync_send(); //0
|
||||
serial_delay_half1(); //1
|
||||
serial_low(); //2
|
||||
serial_input_with_pullup(); //2
|
||||
serial_delay_half1(); //3
|
||||
} |
||||
|
||||
inline static |
||||
void change_reciver2sender(void) { |
||||
sync_recv(); //0
|
||||
serial_delay(); //1
|
||||
serial_low(); //3
|
||||
serial_output(); //3
|
||||
serial_delay_half1(); //4
|
||||
} |
||||
|
||||
// interrupt handle to be used by the target device
|
||||
ISR(SERIAL_PIN_INTERRUPT) { |
||||
|
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
serial_low(); |
||||
serial_output(); |
||||
SSTD_t *trans = Transaction_table; |
||||
#else |
||||
// recive transaction table index
|
||||
uint8_t tid; |
||||
uint8_t pecount = 0; |
||||
sync_recv(); |
||||
tid = serial_read_chunk(&pecount,4); |
||||
if(pecount> 0) |
||||
return; |
||||
serial_delay_half1(); |
||||
|
||||
serial_high(); // response step1 low->high
|
||||
serial_output(); |
||||
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH); |
||||
SSTD_t *trans = &Transaction_table[tid]; |
||||
serial_low(); // response step2 ack high->low
|
||||
#endif |
||||
|
||||
// target send phase
|
||||
if( trans->target2initiator_buffer_size > 0 ) |
||||
serial_send_packet((uint8_t *)trans->target2initiator_buffer, |
||||
trans->target2initiator_buffer_size); |
||||
// target switch to input
|
||||
change_sender2reciver(); |
||||
|
||||
// target recive phase
|
||||
if( trans->initiator2target_buffer_size > 0 ) { |
||||
if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer, |
||||
trans->initiator2target_buffer_size) ) { |
||||
*trans->status = TRANSACTION_ACCEPTED; |
||||
} else { |
||||
*trans->status = TRANSACTION_DATA_ERROR; |
||||
} |
||||
} else { |
||||
*trans->status = TRANSACTION_ACCEPTED; |
||||
} |
||||
|
||||
sync_recv(); //weit initiator output to high
|
||||
} |
||||
|
||||
/////////
|
||||
// start transaction by initiator
|
||||
//
|
||||
// int soft_serial_transaction(int sstd_index)
|
||||
//
|
||||
// Returns:
|
||||
// TRANSACTION_END
|
||||
// TRANSACTION_NO_RESPONSE
|
||||
// TRANSACTION_DATA_ERROR
|
||||
// this code is very time dependent, so we need to disable interrupts
|
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
int soft_serial_transaction(void) { |
||||
SSTD_t *trans = Transaction_table; |
||||
#else |
||||
int soft_serial_transaction(int sstd_index) { |
||||
SSTD_t *trans = &Transaction_table[sstd_index]; |
||||
#endif |
||||
cli(); |
||||
|
||||
// signal to the target that we want to start a transaction
|
||||
serial_output(); |
||||
serial_low(); |
||||
_delay_us(SLAVE_INT_WIDTH_US); |
||||
|
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
// wait for the target response
|
||||
serial_input_with_pullup(); |
||||
_delay_us(SLAVE_INT_RESPONSE_TIME); |
||||
|
||||
// check if the target is present
|
||||
if (serial_read_pin()) { |
||||
// target failed to pull the line low, assume not present
|
||||
serial_output(); |
||||
serial_high(); |
||||
*trans->status = TRANSACTION_NO_RESPONSE; |
||||
sei(); |
||||
return TRANSACTION_NO_RESPONSE; |
||||
} |
||||
|
||||
#else |
||||
// send transaction table index
|
||||
sync_send(); |
||||
_delay_sub_us(TID_SEND_ADJUST); |
||||
serial_write_chunk(sstd_index, 4); |
||||
serial_delay_half1(); |
||||
|
||||
// wait for the target response (step1 low->high)
|
||||
serial_input_with_pullup(); |
||||
while( !serial_read_pin() ) { |
||||
_delay_sub_us(2); |
||||
} |
||||
|
||||
// check if the target is present (step2 high->low)
|
||||
for( int i = 0; serial_read_pin(); i++ ) { |
||||
if (i > SLAVE_INT_ACK_WIDTH + 1) { |
||||
// slave failed to pull the line low, assume not present
|
||||
serial_output(); |
||||
serial_high(); |
||||
*trans->status = TRANSACTION_NO_RESPONSE; |
||||
sei(); |
||||
return TRANSACTION_NO_RESPONSE; |
||||
} |
||||
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT); |
||||
} |
||||
#endif |
||||
|
||||
// initiator recive phase
|
||||
// if the target is present syncronize with it
|
||||
if( trans->target2initiator_buffer_size > 0 ) { |
||||
if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer, |
||||
trans->target2initiator_buffer_size) ) { |
||||
serial_output(); |
||||
serial_high(); |
||||
*trans->status = TRANSACTION_DATA_ERROR; |
||||
sei(); |
||||
return TRANSACTION_DATA_ERROR; |
||||
} |
||||
} |
||||
|
||||
// initiator switch to output
|
||||
change_reciver2sender(); |
||||
|
||||
// initiator send phase
|
||||
if( trans->initiator2target_buffer_size > 0 ) { |
||||
serial_send_packet((uint8_t *)trans->initiator2target_buffer, |
||||
trans->initiator2target_buffer_size); |
||||
} |
||||
|
||||
// always, release the line when not in use
|
||||
sync_send(); |
||||
|
||||
*trans->status = TRANSACTION_END; |
||||
sei(); |
||||
return TRANSACTION_END; |
||||
} |
||||
|
||||
#ifdef SERIAL_USE_MULTI_TRANSACTION |
||||
int soft_serial_get_and_clean_status(int sstd_index) { |
||||
SSTD_t *trans = &Transaction_table[sstd_index]; |
||||
cli(); |
||||
int retval = *trans->status; |
||||
*trans->status = 0;; |
||||
sei(); |
||||
return retval; |
||||
} |
||||
#endif |
||||
|
||||
#endif |
@ -0,0 +1,80 @@ |
||||
#ifndef SOFT_SERIAL_H |
||||
#define SOFT_SERIAL_H |
||||
|
||||
#include <stdbool.h> |
||||
|
||||
// /////////////////////////////////////////////////////////////////
|
||||
// Need Soft Serial defines in serial_config.h
|
||||
// /////////////////////////////////////////////////////////////////
|
||||
// ex.
|
||||
// #define SERIAL_PIN_DDR DDRD
|
||||
// #define SERIAL_PIN_PORT PORTD
|
||||
// #define SERIAL_PIN_INPUT PIND
|
||||
// #define SERIAL_PIN_MASK _BV(PD?) ?=0,2
|
||||
// #define SERIAL_PIN_INTERRUPT INT?_vect ?=0,2
|
||||
//
|
||||
// //// USE Simple API (OLD API, compatible with let's split serial.c)
|
||||
// ex.
|
||||
// #define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
|
||||
// #define SERIAL_MASTER_BUFFER_LENGTH 1
|
||||
//
|
||||
// //// USE flexible API (using multi-type transaction function)
|
||||
// #define SERIAL_USE_MULTI_TRANSACTION
|
||||
//
|
||||
// /////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */ |
||||
#if SERIAL_SLAVE_BUFFER_LENGTH > 0 |
||||
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH]; |
||||
#endif |
||||
#if SERIAL_MASTER_BUFFER_LENGTH > 0 |
||||
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH]; |
||||
#endif |
||||
|
||||
void serial_master_init(void); |
||||
void serial_slave_init(void); |
||||
int serial_update_buffers(void); |
||||
|
||||
#endif // USE Simple API
|
||||
|
||||
// Soft Serial Transaction Descriptor
|
||||
typedef struct _SSTD_t { |
||||
uint8_t *status; |
||||
uint8_t initiator2target_buffer_size; |
||||
uint8_t *initiator2target_buffer; |
||||
uint8_t target2initiator_buffer_size; |
||||
uint8_t *target2initiator_buffer; |
||||
} SSTD_t; |
||||
|
||||
// initiator is transaction start side
|
||||
void soft_serial_initiator_init(SSTD_t *sstd_table); |
||||
// target is interrupt accept side
|
||||
void soft_serial_target_init(SSTD_t *sstd_table); |
||||
|
||||
// initiator resullt
|
||||
#define TRANSACTION_END 0 |
||||
#define TRANSACTION_NO_RESPONSE 0x1 |
||||
#define TRANSACTION_DATA_ERROR 0x2 |
||||
#ifndef SERIAL_USE_MULTI_TRANSACTION |
||||
int soft_serial_transaction(void); |
||||
#else |
||||
int soft_serial_transaction(int sstd_index); |
||||
#endif |
||||
|
||||
// target status
|
||||
// *SSTD_t.status has
|
||||
// initiator:
|
||||
// TRANSACTION_END
|
||||
// or TRANSACTION_NO_RESPONSE
|
||||
// or TRANSACTION_DATA_ERROR
|
||||
// target:
|
||||
// TRANSACTION_DATA_ERROR
|
||||
// or TRANSACTION_ACCEPTED
|
||||
#define TRANSACTION_ACCEPTED 0x4 |
||||
#ifdef SERIAL_USE_MULTI_TRANSACTION |
||||
int soft_serial_get_and_clean_status(int sstd_index); |
||||
#endif |
||||
|
||||
#endif /* SOFT_SERIAL_H */ |
@ -0,0 +1,8 @@ |
||||
#define SERIAL_PIN_DDR DDRD |
||||
#define SERIAL_PIN_PORT PORTD |
||||
#define SERIAL_PIN_INPUT PIND |
||||
#define SERIAL_PIN_MASK _BV(PD2) |
||||
#define SERIAL_PIN_INTERRUPT INT2_vect |
||||
|
||||
#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2 |
||||
#define SERIAL_MASTER_BUFFER_LENGTH 1 |
@ -0,0 +1,86 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/wdt.h> |
||||
#include <avr/power.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
#include <avr/eeprom.h> |
||||
#include "split_util.h" |
||||
#include "matrix.h" |
||||
#include "keyboard.h" |
||||
#include "config.h" |
||||
#include "timer.h" |
||||
|
||||
#ifdef USE_I2C |
||||
# include "i2c.h" |
||||
#else |
||||
# include "serial.h" |
||||
#endif |
||||
|
||||
volatile bool isLeftHand = true; |
||||
|
||||
static void setup_handedness(void) { |
||||
#ifdef EE_HANDS |
||||
isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS); |
||||
#else |
||||
// I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
|
||||
#if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT) |
||||
isLeftHand = !has_usb(); |
||||
#else |
||||
isLeftHand = has_usb(); |
||||
#endif |
||||
#endif |
||||
} |
||||
|
||||
static void keyboard_master_setup(void) { |
||||
#ifdef USE_I2C |
||||
i2c_master_init(); |
||||
//#ifdef SSD1306OLED
|
||||
// matrix_master_OLED_init ();
|
||||
//#endif
|
||||
#else |
||||
serial_master_init(); |
||||
#endif |
||||
} |
||||
|
||||
static void keyboard_slave_setup(void) { |
||||
timer_init(); |
||||
#ifdef USE_I2C |
||||
i2c_slave_init(SLAVE_I2C_ADDRESS); |
||||
#else |
||||
serial_slave_init(); |
||||
#endif |
||||
} |
||||
|
||||
bool has_usb(void) { |
||||
USBCON |= (1 << OTGPADE); //enables VBUS pad
|
||||
_delay_us(5); |
||||
return (USBSTA & (1<<VBUS)); //checks state of VBUS
|
||||
} |
||||
|
||||
void split_keyboard_setup(void) { |
||||
setup_handedness(); |
||||
|
||||
if (has_usb()) { |
||||
keyboard_master_setup(); |
||||
} else { |
||||
keyboard_slave_setup(); |
||||
} |
||||
sei(); |
||||
} |
||||
|
||||
void keyboard_slave_loop(void) { |
||||
matrix_init(); |
||||
|
||||
while (1) { |
||||
matrix_slave_scan(); |
||||
} |
||||
} |
||||
|
||||
// this code runs before the usb and keyboard is initialized
|
||||
void matrix_setup(void) { |
||||
split_keyboard_setup(); |
||||
|
||||
if (!has_usb()) { |
||||
keyboard_slave_loop(); |
||||
} |
||||
} |
@ -0,0 +1,20 @@ |
||||
#ifndef SPLIT_KEYBOARD_UTIL_H |
||||
#define SPLIT_KEYBOARD_UTIL_H |
||||
|
||||
#include <stdbool.h> |
||||
#include "eeconfig.h" |
||||
|
||||
#define SLAVE_I2C_ADDRESS 0x32 |
||||
|
||||
extern volatile bool isLeftHand; |
||||
|
||||
// slave version of matix scan, defined in matrix.c
|
||||
void matrix_slave_scan(void); |
||||
|
||||
void split_keyboard_setup(void); |
||||
bool has_usb(void); |
||||
void keyboard_slave_loop(void); |
||||
|
||||
void matrix_master_OLED_init (void); |
||||
|
||||
#endif |
@ -0,0 +1,330 @@ |
||||
#ifdef SSD1306OLED |
||||
|
||||
#include "ssd1306.h" |
||||
#include "i2c.h" |
||||
#include <string.h> |
||||
#include "print.h" |
||||
#include "glcdfont.c" |
||||
#ifdef ADAFRUIT_BLE_ENABLE |
||||
#include "adafruit_ble.h" |
||||
#endif |
||||
#ifdef PROTOCOL_LUFA |
||||
#include "lufa.h" |
||||
#endif |
||||
#include "sendchar.h" |
||||
#include "timer.h" |
||||
|
||||
// Set this to 1 to help diagnose early startup problems
|
||||
// when testing power-on with ble. Turn it off otherwise,
|
||||
// as the latency of printing most of the debug info messes
|
||||
// with the matrix scan, causing keys to drop.
|
||||
#define DEBUG_TO_SCREEN 0 |
||||
|
||||
//static uint16_t last_battery_update;
|
||||
//static uint32_t vbat;
|
||||
//#define BatteryUpdateInterval 10000 /* milliseconds */
|
||||
#define ScreenOffInterval 300000 /* milliseconds */ |
||||
#if DEBUG_TO_SCREEN |
||||
static uint8_t displaying; |
||||
#endif |
||||
static uint16_t last_flush; |
||||
|
||||
// Write command sequence.
|
||||
// Returns true on success.
|
||||
static inline bool _send_cmd1(uint8_t cmd) { |
||||
bool res = false; |
||||
|
||||
if (i2c_start_write(SSD1306_ADDRESS)) { |
||||
xprintf("failed to start write to %d\n", SSD1306_ADDRESS); |
||||
goto done; |
||||
} |
||||
|
||||
if (i2c_master_write(0x0 /* command byte follows */)) { |
||||
print("failed to write control byte\n"); |
||||
|
||||
goto done; |
||||
} |
||||
|
||||
if (i2c_master_write(cmd)) { |
||||
xprintf("failed to write command %d\n", cmd); |
||||
goto done; |
||||
} |
||||
res = true; |
||||
done: |
||||
i2c_master_stop(); |
||||
return res; |
||||
} |
||||
|
||||
// Write 2-byte command sequence.
|
||||
// Returns true on success
|
||||
static inline bool _send_cmd2(uint8_t cmd, uint8_t opr) { |
||||
if (!_send_cmd1(cmd)) { |
||||
return false; |
||||
} |
||||
return _send_cmd1(opr); |
||||
} |
||||
|
||||
// Write 3-byte command sequence.
|
||||
// Returns true on success
|
||||
static inline bool _send_cmd3(uint8_t cmd, uint8_t opr1, uint8_t opr2) { |
||||
if (!_send_cmd1(cmd)) { |
||||
return false; |
||||
} |
||||
if (!_send_cmd1(opr1)) { |
||||
return false; |
||||
} |
||||
return _send_cmd1(opr2); |
||||
} |
||||
|
||||
#define send_cmd1(c) if (!_send_cmd1(c)) {goto done;} |
||||
#define send_cmd2(c,o) if (!_send_cmd2(c,o)) {goto done;} |
||||
#define send_cmd3(c,o1,o2) if (!_send_cmd3(c,o1,o2)) {goto done;} |
||||
|
||||
static void clear_display(void) { |
||||
matrix_clear(&display); |
||||
|
||||
// Clear all of the display bits (there can be random noise
|
||||
// in the RAM on startup)
|
||||
send_cmd3(PageAddr, 0, (DisplayHeight / 8) - 1); |
||||
send_cmd3(ColumnAddr, 0, DisplayWidth - 1); |
||||
|
||||
if (i2c_start_write(SSD1306_ADDRESS)) { |
||||
goto done; |
||||
} |
||||
if (i2c_master_write(0x40)) { |
||||
// Data mode
|
||||
goto done; |
||||
} |
||||
for (uint8_t row = 0; row < MatrixRows; ++row) { |
||||
for (uint8_t col = 0; col < DisplayWidth; ++col) { |
||||
i2c_master_write(0); |
||||
} |
||||
} |
||||
|
||||
display.dirty = false; |
||||
|
||||
done: |
||||
i2c_master_stop(); |
||||
} |
||||
|
||||
#if DEBUG_TO_SCREEN |
||||
#undef sendchar |
||||
static int8_t capture_sendchar(uint8_t c) { |
||||
sendchar(c); |
||||
iota_gfx_write_char(c); |
||||
|
||||
if (!displaying) { |
||||
iota_gfx_flush(); |
||||
} |
||||
return 0; |
||||
} |
||||
#endif |
||||
|
||||
bool iota_gfx_init(bool rotate) { |
||||
bool success = false; |
||||
|
||||
send_cmd1(DisplayOff); |
||||
send_cmd2(SetDisplayClockDiv, 0x80); |
||||
send_cmd2(SetMultiPlex, DisplayHeight - 1); |
||||
|
||||
send_cmd2(SetDisplayOffset, 0); |
||||
|
||||
|
||||
send_cmd1(SetStartLine | 0x0); |
||||
send_cmd2(SetChargePump, 0x14 /* Enable */); |
||||
send_cmd2(SetMemoryMode, 0 /* horizontal addressing */); |
||||
|
||||
if(rotate){ |
||||
// the following Flip the display orientation 180 degrees
|
||||
send_cmd1(SegRemap); |
||||
send_cmd1(ComScanInc); |
||||
}else{ |
||||
// Flips the display orientation 0 degrees
|
||||
send_cmd1(SegRemap | 0x1); |
||||
send_cmd1(ComScanDec); |
||||
} |
||||
|
||||
send_cmd2(SetComPins, 0x2); |
||||
send_cmd2(SetContrast, 0x8f); |
||||
send_cmd2(SetPreCharge, 0xf1); |
||||
send_cmd2(SetVComDetect, 0x40); |
||||
send_cmd1(DisplayAllOnResume); |
||||
send_cmd1(NormalDisplay); |
||||
send_cmd1(DeActivateScroll); |
||||
send_cmd1(DisplayOn); |
||||
|
||||
send_cmd2(SetContrast, 0); // Dim
|
||||
|
||||
clear_display(); |
||||
|
||||
success = true; |
||||
|
||||
iota_gfx_flush(); |
||||
|
||||
#if DEBUG_TO_SCREEN |
||||
print_set_sendchar(capture_sendchar); |
||||
#endif |
||||
|
||||
done: |
||||
return success; |
||||
} |
||||
|
||||
bool iota_gfx_off(void) { |
||||
bool success = false; |
||||
|
||||
send_cmd1(DisplayOff); |
||||
success = true; |
||||
|
||||
done: |
||||
return success; |
||||
} |
||||
|
||||
bool iota_gfx_on(void) { |
||||
bool success = false; |
||||
|
||||
send_cmd1(DisplayOn); |
||||
success = true; |
||||
|
||||
done: |
||||
return success; |
||||
} |
||||
|
||||
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c) { |
||||
*matrix->cursor = c; |
||||
++matrix->cursor; |
||||
|
||||
if (matrix->cursor - &matrix->display[0][0] == sizeof(matrix->display)) { |
||||
// We went off the end; scroll the display upwards by one line
|
||||
memmove(&matrix->display[0], &matrix->display[1], |
||||
MatrixCols * (MatrixRows - 1)); |
||||
matrix->cursor = &matrix->display[MatrixRows - 1][0]; |
||||
memset(matrix->cursor, ' ', MatrixCols); |
||||
} |
||||
} |
||||
|
||||
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c) { |
||||
matrix->dirty = true; |
||||
|
||||
if (c == '\n') { |
||||
// Clear to end of line from the cursor and then move to the
|
||||
// start of the next line
|
||||
uint8_t cursor_col = (matrix->cursor - &matrix->display[0][0]) % MatrixCols; |
||||
|
||||
while (cursor_col++ < MatrixCols) { |
||||
matrix_write_char_inner(matrix, ' '); |
||||
} |
||||
return; |
||||
} |
||||
|
||||
matrix_write_char_inner(matrix, c); |
||||
} |
||||
|
||||
void iota_gfx_write_char(uint8_t c) { |
||||
matrix_write_char(&display, c); |
||||
} |
||||
|
||||
void matrix_write(struct CharacterMatrix *matrix, const char *data) { |
||||
const char *end = data + strlen(data); |
||||
while (data < end) { |
||||
matrix_write_char(matrix, *data); |
||||
++data; |
||||
} |
||||
} |
||||
|
||||
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data) { |
||||
char data_ln[strlen(data)+2]; |
||||
snprintf(data_ln, sizeof(data_ln), "%s\n", data); |
||||
matrix_write(matrix, data_ln); |
||||
} |
||||
|
||||
void iota_gfx_write(const char *data) { |
||||
matrix_write(&display, data); |
||||
} |
||||
|
||||
void matrix_write_P(struct CharacterMatrix *matrix, const char *data) { |
||||
while (true) { |
||||
uint8_t c = pgm_read_byte(data); |
||||
if (c == 0) { |
||||
return; |
||||
} |
||||
matrix_write_char(matrix, c); |
||||
++data; |
||||
} |
||||
} |
||||
|
||||
void iota_gfx_write_P(const char *data) { |
||||
matrix_write_P(&display, data); |
||||
} |
||||
|
||||
void matrix_clear(struct CharacterMatrix *matrix) { |
||||
memset(matrix->display, ' ', sizeof(matrix->display)); |
||||
matrix->cursor = &matrix->display[0][0]; |
||||
matrix->dirty = true; |
||||
} |
||||
|
||||
void iota_gfx_clear_screen(void) { |
||||
matrix_clear(&display); |
||||
} |
||||
|
||||
void matrix_render(struct CharacterMatrix *matrix) { |
||||
last_flush = timer_read(); |
||||
iota_gfx_on(); |
||||
#if DEBUG_TO_SCREEN |
||||
++displaying; |
||||
#endif |
||||
|
||||
// Move to the home position
|
||||
send_cmd3(PageAddr, 0, MatrixRows - 1); |
||||
send_cmd3(ColumnAddr, 0, (MatrixCols * FontWidth) - 1); |
||||
|
||||
if (i2c_start_write(SSD1306_ADDRESS)) { |
||||
goto done; |
||||
} |
||||
if (i2c_master_write(0x40)) { |
||||
// Data mode
|
||||
goto done; |
||||
} |
||||
|
||||
for (uint8_t row = 0; row < MatrixRows; ++row) { |
||||
for (uint8_t col = 0; col < MatrixCols; ++col) { |
||||
const uint8_t *glyph = font + (matrix->display[row][col] * FontWidth); |
||||
|
||||
for (uint8_t glyphCol = 0; glyphCol < FontWidth; ++glyphCol) { |
||||
uint8_t colBits = pgm_read_byte(glyph + glyphCol); |
||||
i2c_master_write(colBits); |
||||
} |
||||
|
||||
// 1 column of space between chars (it's not included in the glyph)
|
||||
//i2c_master_write(0);
|
||||
} |
||||
} |
||||
|
||||
matrix->dirty = false; |
||||
|
||||
done: |
||||
i2c_master_stop(); |
||||
#if DEBUG_TO_SCREEN |
||||
--displaying; |
||||
#endif |
||||
} |
||||
|
||||
void iota_gfx_flush(void) { |
||||
matrix_render(&display); |
||||
} |
||||
|
||||
__attribute__ ((weak)) |
||||
void iota_gfx_task_user(void) { |
||||
} |
||||
|
||||
void iota_gfx_task(void) { |
||||
iota_gfx_task_user(); |
||||
|
||||
if (display.dirty) { |
||||
iota_gfx_flush(); |
||||
} |
||||
|
||||
if (timer_elapsed(last_flush) > ScreenOffInterval) { |
||||
iota_gfx_off(); |
||||
} |
||||
} |
||||
#endif |
@ -0,0 +1,94 @@ |
||||
#ifndef SSD1306_H |
||||
#define SSD1306_H |
||||
|
||||
#include <stdbool.h> |
||||
#include <stdio.h> |
||||
#include "pincontrol.h" |
||||
#include "config.h" |
||||
|
||||
enum ssd1306_cmds { |
||||
DisplayOff = 0xAE, |
||||
DisplayOn = 0xAF, |
||||
|
||||
SetContrast = 0x81, |
||||
DisplayAllOnResume = 0xA4, |
||||
|
||||
DisplayAllOn = 0xA5, |
||||
NormalDisplay = 0xA6, |
||||
InvertDisplay = 0xA7, |
||||
SetDisplayOffset = 0xD3, |
||||
SetComPins = 0xda, |
||||
SetVComDetect = 0xdb, |
||||
SetDisplayClockDiv = 0xD5, |
||||
SetPreCharge = 0xd9, |
||||
SetMultiPlex = 0xa8, |
||||
SetLowColumn = 0x00, |
||||
SetHighColumn = 0x10, |
||||
SetStartLine = 0x40, |
||||
|
||||
SetMemoryMode = 0x20, |
||||
ColumnAddr = 0x21, |
||||
PageAddr = 0x22, |
||||
|
||||
ComScanInc = 0xc0, |
||||
ComScanDec = 0xc8, |
||||
SegRemap = 0xa0, |
||||
SetChargePump = 0x8d, |
||||
ExternalVcc = 0x01, |
||||
SwitchCapVcc = 0x02, |
||||
|
||||
ActivateScroll = 0x2f, |
||||
DeActivateScroll = 0x2e, |
||||
SetVerticalScrollArea = 0xa3, |
||||
RightHorizontalScroll = 0x26, |
||||
LeftHorizontalScroll = 0x27, |
||||
VerticalAndRightHorizontalScroll = 0x29, |
||||
VerticalAndLeftHorizontalScroll = 0x2a, |
||||
}; |
||||
|
||||
// Controls the SSD1306 128x32 OLED display via i2c
|
||||
|
||||
#ifndef SSD1306_ADDRESS |
||||
#define SSD1306_ADDRESS 0x3C |
||||
#endif |
||||
|
||||
#define DisplayHeight 32 |
||||
#define DisplayWidth 128 |
||||
|
||||
#define FontHeight 8 |
||||
#define FontWidth 6 |
||||
|
||||
#define MatrixRows (DisplayHeight / FontHeight) |
||||
#define MatrixCols (DisplayWidth / FontWidth) |
||||
|
||||
struct CharacterMatrix { |
||||
uint8_t display[MatrixRows][MatrixCols]; |
||||
uint8_t *cursor; |
||||
bool dirty; |
||||
}; |
||||
|
||||
struct CharacterMatrix display; |
||||
|
||||
bool iota_gfx_init(bool rotate); |
||||
void iota_gfx_task(void); |
||||
bool iota_gfx_off(void); |
||||
bool iota_gfx_on(void); |
||||
void iota_gfx_flush(void); |
||||
void iota_gfx_write_char(uint8_t c); |
||||
void iota_gfx_write(const char *data); |
||||
void iota_gfx_write_P(const char *data); |
||||
void iota_gfx_clear_screen(void); |
||||
|
||||
void iota_gfx_task_user(void); |
||||
|
||||
void matrix_clear(struct CharacterMatrix *matrix); |
||||
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c); |
||||
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c); |
||||
void matrix_write(struct CharacterMatrix *matrix, const char *data); |
||||
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data); |
||||
void matrix_write_P(struct CharacterMatrix *matrix, const char *data); |
||||
void matrix_render(struct CharacterMatrix *matrix); |
||||
|
||||
|
||||
|
||||
#endif |
Loading…
Reference in new issue